SYNTHESIS AND STRUCTURE OF 2-FORMYL-3-HYDROXYBENZO[b]-SELENOPHENE ANILS*

Z. I. Minkin, V. A. Bren', and G. D. Palui

UDC 547:739.3.07:541.623

A number of 2-formyl-3-hydroxybenzo[b]selenophene anils and their derivatives, which model the individual tautometic forms, were synthesized. A ketone—amine structure was assigned to the anils as a result of physicochemical investigation.

We have previously shown that 2-formyl-3-hydroxybenzo[b]furan and 2-formyl-3-hydroxybenzo[b]thiophene anils (I, X = 0, S) have ketone—amine structure Ic in solution, i.e., the possible Ia $\not\equiv$ Ic equilibrium is shifted practically completely to the right [2, 3].

It seemed of interest to study whether the introduction into I of a heteroatom less electronegative than oxygen and sulfur (X = Se) would affect the position of this benzoid—quinoid equilibrium. With this end in mind, we synthesized 2-formyl-3-hydroxy[b]seleno-phene anils I (X = Se) and also their derivatives II and III, which model the individual tautomeric forms.

I a-c R = H, p-Cl, m-Cl, p-OCH₃, p-COCH₃; II R = H, p-Cl

In order to determine the character of the Ia $\not\subset$ Ic tautomeric equilibrium we recorded the electronic, vibrational, and PMR spectra of I-III.

The intensities and positions of the absorption bands in the electronic spectra of I remain practically unchanged as the polarity of the solvent changes and as substituent R in the phenyl ring is varied. This constitutes evidence that I (X = Se) exist in solution as one of three possible tautomeric forms.

The similarity in the spectra of I and III and their clear difference from the spectra of II (Fig. 1) indicate the preferableness of quinoid form Ic (X = Se).

The PMR spectra prove the existence of anils I in form Ic. Two distinct doublets of CH and NH protons with a spin—spin coupling constant of 13 Hz, which coincides in magnitude with the analogous constant observed in the spectra of the quinoid tautomers of the mercapto-and hydroxyaldimines of benzo[b]furan and benzo[b]thiophene [2, 3], are observed in the PMR

*Communication XIX from the series "Benzoid—Quinoid Tautomerism of Azomethines and Their Structural Analogs." See [1] for communication XVIII.

Rostov State University. Scientific-Research Institute of Physical and Organic Chemistry, Rostov-on-Don. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 781-783, June, 1975. Original article submitted January 29, 1974; revision submitted August 8, 1974.

© 1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

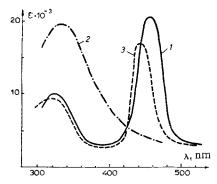


Fig. 1. Electronic absorption spectra in ethanol: 1) 2-formyl-hydroxybenzo[b]selenophene anil (I, R = H); 2) 2-formyl-3-methoxybenzo[b]selenophene anil (II, R = H); 3) 2-(N,N-dimethylaminomethylene)-3(2H)-benzoselenophenone.

spectrum, and this indicates practically complete shifting of the tautomeric equilibrium to favor form Ic. The chemical shift of the signals of the NH protons of I in dimethyl sulfoxide (DMSO) solutions ($\delta \sim 10~\text{ppm})$ remains practically unchanged as heteroatom X is varied, whereas the signal of the CH protons of the benzoselenophene derivatives is shifted to weak field as compared with benzofuran and benzothiophene anils [2, 3]. This is probably due to the large anisotropic contribution of selenium as compared with sulfur and oxygen.

The IR spectroscopic data (Table 1) confirm the ketone—amine structure of the 2-formy1-3-hydroxybenzo-[b]selenophene anils.

The vibrational spectra of azomethines I (X = Se) contain the strong absorption band of a ring carbonyl group at ~1600 cm $^{-1}$; this band is observed at 1650 cm $^{-1}$ in the spectrum of III. However, a band at 1590-1600 cm $^{-1}$ ($\nu_{C=N}$) [2, 3] is observed in the spectra of azomethines II.

The decrease in the frequency of the absorption of the C=N bond to $1590-1600 \text{ cm}^{-1}$ is apparently due to the effect of the selenium atom.

Thus, regardless of replacement of heteroatom X in the five-membered ring, a change in the polarity of the solvent, and the structural variations, azomethines I exist in the form of ketone amine structure Ic.

EXPERIMENTAL METHOD

The UV spectra were recorded with a Specord UV-Vis spectrophotometer. The IR spectra were recorded with a UR-20 spectrometer. The PMR spectra of 0.4-0.5 M solutions of the compounds in DMSO were recorded with a Tesla spectrometer (80 MHz) with hexamethyldisiloxane as the internal standard.

2,3-Dihydro-3-oxobenzo[b]selenophene (IV). This compound, with mp 76° (from water), was obtained by the method in [4].

Azomethines I. A) A solution of equimolecular amounts of IV and the appropriate diarylformamidine [5] in alcohol was refluxed for 30 min. The resulting azomethines were recrystallized successively from 50% aqueous pyridine and aqueous alcohol. UV spectrum (in ethanol), λ_{max} , nm (log ϵ): 325-330 (4.00) and 450-460 (4.30).

B) A solution of equimolecular amounts of IV and ethoxymethylene aniline [6] in alcohol was refluxed for 30 min. The crystals obtained after the mixture was cooled were recrystallized from aqueous alcohol.

3-Chloro-2-formylbenzo[b]selenophene (V). A 1-ml (0.01 mole) sample of POCl₃ was added at 0° to 1.6 ml (0.02 mole) of dimethylformamide (DMF), after which a solution of 1.97 g (0.01 mole) of IV in 15 ml of DMF was added dropwise at 0°. The mixture was then stirred at 0° for 2 h and at 50-60° for 1 h, after which it was poured into a mixture of 100 g of ice and 10 g of sodium acetate, and the precipitate was removed by filtration and steam distilled to give 1.56 g (65%) of aldehyde V. The product sublimed at 50-60° to give colorless needles with mp 84°. Found: C 43.8; H 2.1%. C₉H₅ClOSe. Calculated: C 44.4; H 2.1%. IR spectrum: $\nu_{C=0}$ 1655 cm⁻¹.

2-Formyl-3-methoxybenzo[b]selenophene (VI). A 1.5-g (6 mmole) sample of V and a catalytic amount of potassium iodide were added to a solution of 0.15 g (6.5 mmole) of sodium in 18 ml of methanol, after which the mixture was refluxed for 4 h. The hot solution was filtered, and the filtrate was cooled to give 0.8 g (54%) of cubic crystals of VI with mp 96° (from alcohol). Found: C 49.9; H 3.2%. C₁oH₈O₂Se. Calculated: C 50.2; H 3.4%. IR spectrum: $\nu_{C=0}$ 1655 cm⁻¹.

Azomethines II. These compounds were obtained by condensation of VI with equimolecular amounts of the appropriate substituted anilines. UV spectrum in ethanol: λ_{max} 335 nm (log ϵ 4.28).

TABLE 1. IR Spectra of 2-Formyl-3-hydroxybenzo[b]selenophene Anils

Com- pound	R	mp,	Empirical formula	Found, %		Calc., %		IR spectra of mineral
				_ c	Н	С	н	oil suspen- sions, cm-1
I I I I II II	H p-Cl m-Cl p-OCH ₃ p-COCH ₃ H p-Cl	156 197 192 165 200 66 106	$\begin{array}{c} C_{15}H_{11}NOSe \\ C_{15}H_{10}NCIOSe \\ C_{15}H_{10}NCIOSe \\ C_{16}H_{19}NO_{2}Se \\ C_{17}H_{13}NO_{2}Se \\ C_{16}H_{13}NOSe \\ C_{16}H_{12}NCIOSe \end{array}$	60,4 54,1 53,3 58,2 59,3 61,1 55,4	3,9 2,9 3,5 3,7 3,3 3,6 3,1	60,0 53,8 53,8 58,2 59,7 61,2 55,1	3,7 3,0 3,0 4,0 3,8 4,1 3,5	1660 1670 1650 1655 1650 1590 1600

 $\frac{2-(\text{N,N-dimethylaminomethylene})-3(2\text{H})-\text{benzoselenophenone}}{\text{sample of POCl}_3 \text{ and a solution of 4 g (0.02 mole) of IV in 30 ml of DMF were added sucessively dropwise at 0° to 3.2 ml (0.04 mole) of DMF, after which the mixture was stirred at 0° for 3 h. It was then poured into a mixture of 200 g of ice and 20 g of sodium acetate, and the precipitate was removed by filtration, dried, and crystallized from alcohol to give yellow plates with mp 202° in 80% yield. Found: C 52.1; H 4.1%. C₁₁H₁₁NOSe. Calculated: C 52.4; H 4.4%. IR spectrum: <math>\nu_{C=0}$ 1650 cm⁻¹. PMR spectrum: δ 8.07 ppm (singlet, CH) and 3.13 ppm (singlet, CH₃).

LITERATURE CITED

- 1. V. A. Bren', V. I. Usacheva, V. I. Minkin, and M. V. Nekhoroshev, Khim. Geterotsikl. Soedin., 635 (1975).
- 2. V. A..Bren', V. I. Usacheva, and V. I. Minkin, Khim. Geterotsikl. Soedin., 920 (1972).
- 3. V. A. Bren', Zh. V. Bren', and V. I. Minkin, Khim. Geterotsikl. Soedin., 154 (1973).
- 4. N. N. Magdesieva and V. A. Vdovin, Khim. Geterotsikl. Soedin., 1475 (1970).
- 5. P. Lochon, Bull. Soc. Chim. France, 393 (1965).
- 6. R. M. Roberts, J. Amer. Chem. Soc., 71, 3848 (1949).